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ABSTRACT

This report summarises recent research conducted by the DSTO in plume
model development for urban environments, with an emphasis on establishing
clear physical grounds for the models, yet maintaining enough simplicity to be
treated numerically in an operationally viable way. The aim is not to replace
existing operational models with a new generation of more accurate models,
but to provide a more physics-based framework for flow and dispersion in an
urban environment that can reconcile the empirically based approach of current
operational models, and the more sophisticated computational fluid dynamics
techniques now gaining popularity for atmospheric dispersion applications. A
key feature of the model framework developed in this report is the definition of
a single parameter that describes canopy morphology, and links this to canopy
flow variables. A simple canopy dispersion model is then developed, based on
flow parameters generated by the canopy model. In relevant areas the well-
known Urban Dispersion Model by the UK Defence Science and Technology
Laboratory is used as a benchmark for comparison. Supporting evidence for
the models developed here is supplied through comparison with experimental
data from a water channel simulation.
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Turbulent Dispersion Modelling in a Complex Urban
Environment – Data Analysis and Model Development

Executive Summary

The purpose of this report is to summarise the recent research conducted by the De-
fence Science and Technology Organisation (DSTO) in the development of a modelling
framework for predicting the dispersion of chemical, biological or radiological (CBR) con-
taminants in urban environments. In relevant areas the well-known empirically based
Urban Dispersion Model (UDM) developed by the UK Defence Science and Technology
Laboratory (Dstl) is used as a benchmark for comparison. Comparisons are also made
with some more practically oriented computational fluid dynamics (CFD) models that are
receiving considerable interest in the literature.

The aim is not to replace existing operational models with a new generation of more
accurate models—the broad scope of issues and problems to be addressed in completing
such a task is not able to be attempted here, and the enhancement of operational capability
from such an undertaking is far from clear. Rather, we provide a more physics-based
framework for flow and dispersion models in an urban environment that can to some
extent reconcile the very empirically based approach of models such as the UDM, and the
more sophisticated CFD models. In developing such a framework, we are able to better
interpret experimental data for validation of various models, and provide a starting point
for the development of more complex concentration fluctuation models. Such models
are a challenge to formulate in an urban environment, but ultimately are required for
the development of synthetic CBR environments to predict realistic fluctuating challenge
levels, toxicity response, optimal detector networks, data fusion algorithms for enhanced
CBR situational awareness, and the rigorous quantification of uncertainty in dispersion
predictions.

To achieve clarity in the range of approaches available for practical models of con-
taminant dispersion in urban areas, an overview of various methods recently developed
for turbulent transport and mixing over an inhomogeneous canopy is presented in Sec-
tion 2. The analytical complexity of those methods is simplified to a degree that allows
straightforward practical implementation and application.

Using these results as a foundation, in Section 3 a new theoretical framework is pro-
posed based on matching flow parameters inside and outside the canopy. The proposed
theoretical framework can help to validate and justify some heuristic assumptions of the
UDM and may be used as a valuable performance check in other dispersion models. A
key feature of this model framework is the definition of a single parameter that describes
canopy morphology, and links this to canopy flow variables. The flow model is used as
input to a dispersion model for the canopy.

In Section 4 the theoretical findings are validated against experimental data collected
from water channel simulations of dispersion through a variety of different obstacle arrays.
These arrays provide a systematic approach to investigating the effects of differing obstacle
morphology on flow and dispersion. The degree to which the model can reproduce various
plume effects due to the canopy morphology is discussed.

The framework developed allows a link between previously published DSTO work on
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fluctuating plume models in urban settings [30, 33], current DSTO–Commonwealth Scien-
tific and Industrial Research Organisation (CSIRO) collaborative work on internal concen-
tration fluctuations [37], and more complex distributed drag CFD models in urban areas
[18, 19, 20]. This will enable a high fidelity model of urban dispersion to be implemented
for emergency response applications, with the extra capability for predicting concentration
fluctuations. A pilot system involving coupling between a nested hierarchy of mesoscale
meteorological models, CFD models and Lagrangian particle models has already been es-
tablished by Environment Canada in collaboration with Defence Research & Development
Canada (DRDC) and various Canadian universities [2, 3]. The methodology developed
here serves as an interim step, contributing to extra capability for concentration fluctua-
tion prediction and characterisation of the uncertainty in modelling predictions. There is
also potential for a similar system to be implemented within Australia.

The framework developed has also provided a link through the UDM to another im-
portant operational modelling capability that DSTO now possesses—the CBR Virtual
Battle-space developed by Dstl. There is further scope for development of concentration
realisation models within this capability framework. Finally, the generation of prototype
simple synthetic environments for plume realisations is also required to further develop
data fusion algorithms for CBR source characterisation and network detection. The frame-
work developed here is the first step in the development of such a synthetic environment
here at DSTO for these purposes, and can ultimately be used to compare the approaches
studied at DSTO with those of our international collaborators.
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1 Introduction

There exists a large variety of approaches in attempting to solve the difficult problem of
atmospheric dispersion modelling in urban environments. Predicting the evolution of a
plume is a complex problem, to be described by advanced methods of fluid dynamics, the
theory of turbulence and diffusion, and statistics. Its comprehensive modelling is compu-
tationally very intensive and time consuming. However in an operational environment, a
prediction is needed quickly.

The UK Defence Science and Technology Laboratory (Dstl) Urban Dispersion Model
(UDM) [1] provides an example of an effective operational model that can provide quick
answers to threat scenarios of the release of chemical, biological or radiological (CBR)
material of gas or aerosol form into an urban environment. Understandably, such quick
running models are based on many heuristic and practical assumptions, and rely heavily
on empirical parameters derived under certain experimental conditions that are not always
clearly extendable to a wider variety of atmospheric conditions.

On the other hand, there has been growing interest in the use of computational fluid
dynamics models (CFD) for modelling contaminant dispersion in urban areas. Although
more physically based, these models tend to be computationally intensive, and require
considerably greater computational resources (in both computing power and time), so
that they are not generally practical for operational situations. Despite the greater em-
phasis on the underlying physics in these models, the inherent complexity of flow in real
urban environments, and the many approximations and empiricism still required in the
formulation of these models does not necessarily imply that they provide significantly more
accurate predictions.

This report summarises recent work at DSTO in developing a modelling framework
to describe the dispersion of CBR contaminants in an atmospheric boundary layer (ABL)
over a heterogeneous surface. The aim is not to replace existing operational models with
a new generation of more accurate models—the broad scope of issues and problems to be
addressed in completing such a task is not able to be attempted here, and the enhancement
of operational capability from such an undertaking is far from clear. Rather, we provide
a more physics-based framework for flow and dispersion models in an urban environment
that can reconcile to some extent the very empirically based approach of models such
as the UDM, and the more sophisticated CFD models (being developed for example for
Canadian civilian emergency response capability [2, 3]). In developing such a framework,
we are able to better interpret experimental data for validation of various models, and
provide a starting point for the development of more complex concentration fluctuation
models. Such models are a challenge to formulate in an urban environment, but ultimately
are required for the development of synthetic CBR environments to predict realistic fluc-
tuating challenge levels. Concentration fluctuations are important in analysing toxicity
response, optimal detector networks, data fusion algorithms for enhanced CBR situational
awareness, and the rigorous quantification of uncertainty in dispersion predictions.

In order to give a background understanding of previous work in this area, in Section 2
a brief overview of the complex modelling methods recently developed for turbulent trans-
port and mixing is presented. In Section 3 a new theoretical framework is proposed based
on matching flow parameters inside and outside the canopy. The proposed theoretical
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framework can help to validate and justify some heuristic assumptions of the UDM, and
may be used as a valuable performance check in other dispersion models. In Section 4 data
from our water channel experimental data are used in validating our theoretical findings.

2 An Overview of Turbulent Dispersion in the

Urban Boundary Layer

2.1 Velocity Field in the Urban Boundary Layer

Since flow in the ABL is a key driver for CBR pollutant advection and dispersion, the
development of a high fidelity model of this flow is a crucial step in the modelling of the
whole turbulent dispersion process.

The simplest model of flow in the ABL is the celebrated log-law profile [4]. With
coordinate x the downstream distance from the source, y is the crosswind coordinate, and
z ≥ 0 the height above the ground, the vertical profile of mean flow aligned with the x-axis
takes the form

U(z) =
u∗
κ

log
(

z

z0

)
, (1)

where u∗ is the friction velocity, κ = 0.41 is von Karman’s constant, z0 = ν/u∗ is the
viscous length1, and ν is the viscosity. Equation (1) is valid in the surface layer portion
of the ABL, for neutral stability conditions.

It has been known for a long time (dating back to Prandtl [4]) that the ABL velocity
profile can be fairly approximated by a power-law function:

U(z) = au∗
(

z

z0

)m

, (2)

where a and m are constants. This profile, being algebraically simpler than the log-law
profile, has been used merely as a convenient engineering approximation, but recently it
has attracted much attention after being shown that it can be justified based on a self-
similarity property of the ABL flow. For the boundary layer over a flat smooth surface, it
was rigorously shown by Barenblatt et al [5, 6] that

a =
log Re√

3
+

5
2
, m =

3
2 lnRe

, (3)

where Re is the Reynolds number of the flow. For our purposes we assume that both
profiles (1) and (2) hold equally for turbulent flow in the ABL with parameters a and
m to be determined from data fitting. This is justified due to the stochastic nature
of atmospheric flows. The flow variables in the atmosphere do not remain statistically
stationary for long enough for truly converged mean quantities, so the resulting uncertainty
in measured profiles of mean velocity usually cannot provide a distinction between (1) and
(2).

1for flow over smooth surfaces, or roughness length for flow over rough surfaces
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Observed values of m in the atmosphere range from nearly 0 in very unstable condi-
tions, representing perfect mixing and a uniform velocity profile, to nearly 1 in very stable
conditions, approaching the Couette linear profile of laminar motion over a plane surface.
In neutral conditions m ≈ 1/7 [4] (a thorough discussion of wind profiles in different
weather conditions can be found in [35]). The value of m also depends on surface rough-
ness: roughness promotes mixing near the surface, which reduces the velocity gradient at
small z and thus leads to larger m. These effects can be computed in a semi-empirical way
and the UDM [1] also provides a framework for this. While it is acknowledged that the
two profile forms are not mathematically equivalent, we use both forms in various parts of
this report to derive tractable analytical models of flow and dispersion within urban areas
that would not be possible by restricting ourselves to just one choice.

The turbulent (or eddy) viscosity in the ABL can be determined as

K(z) = K0

(
z

z0

)n

. (4)

where K0 and r are constants. The value of n can be specified based on various analytical
models of turbulent boundary layers or directly estimated from the observational data. In
particular, for so-called conjugate power-law profiles (constant momentum flux) [4]

n = 1−m, (5)

and for Monin-Obukhov similarity profiles

n = 1. (6)

In general, we may still consider n as a free independent parameter of the flow model.

Over a rough surface (i.e. ABL over canopy) the profiles (1) and (2) are modified
according to

U(z) =
u∗
κ

log
(

z − d

z0

)
, (7)

U(z) = au∗
(

z − d

z0

)m

, (8)

where now z0 is the roughness height and d is the so-called displacement height. Both d
and z0 should be considered as new fitting parameters of the ABL flow over the canopy,
and their simple physical interpretation is not always obvious. For instance (7) still pro-
duces meaningful results even for d < 0, when its naive interpretation as the “ABL flow
displacement by canopy” is not feasible. It is worth pointing out that determining z0 and
d simultaneously from experimental data is problematic. The difficulty arises from the log
relationship, which causes an exponential dependency of the parameters on uncertainties
in the measured data. This problem has been described in more detail by Gailis [7], and
demonstrated rigorously in a Bayesian inference framework for certain data-sets [8].

The ongoing challenge for any plausible model of ABL flow over the heterogeneous
canopy is to establish reliable functional relationships between z0, d and the parameters
of the canopy (i.e. building morphology). Once such relationships are found, they can
be used in conjunction with (7) or (8) to model the mean velocity profile affected by a
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particular canopy. Such a modified velocity profile can later be used as an input for the
pollutant transport equation (21).

Various simple approaches based on empirical relations can be found in the literature
to relate canopy parameters to velocity profile parameters. These approaches tend to
use formulas with some physical basis, but often coupled with heuristic assumptions and
heavily reliant on tuning the relationships to specific data. Two older examples include
those of Lettau [9] and Counihan [10]. The approach used in the UDM [1] was developed
by Macdonald et al [11], and attempts to base the relationships on firmer physical grounds.
The first key canopy parameter is the ratio of the collective frontal area of the obstacles
to the collective horizontal area of the canopy (called the lot area):

λf =
Af

Ad
, (9)

i.e. the density of the windward faces of the canopy (which is equivalent to leaf area
density for plant canopies). The second key canopy parameter is the ratio of the summed
horizontal area of objects in the canopy (plan area) to the lot area

λp =
Ap

Ad
, (10)

or the dimensionless plan area. Then, given the averaged canopy height H, and the drag
coefficient CD of individual canopy elements, some simple considerations of shear stress
give the following relationships [11]:

d

H
= 1 + A−λp(λp − 1), (11)

z0

H
=

(
1− d

H

)
exp

{
−

[
β

2
CD

κ2

(
1− d

H

)
λf

]−1/2
}

. (12)

Here κ = 0.41 is von Karman’s constant, and we have two constants A and β that are
tunable according to particular obstacle arrays. For a regular cubic array, A = 3.59 and
β = 0.55, whereas for a staggered cubic array, A = 4.43 and β = 1.0. We observe that
d = 0 and z0 = 0 for λp = 0 (no canopy), and d = H and z0 = 0 for λp = 1 (full packing).

The formulae (8), (11) and (12) are the core components of the surface layer flow
model in the UDM and plots for d and z0 corresponding to these formulae are presented
in Figure 25 of the technical documentation [1]. In Section 3.1 we will provide a theoretical
framework in order to derive some analytical relationships between z0, d and the parame-
ters of the canopy. This will help to validate and justify some of the heuristic assumptions
and tuning used to generate the relationships (11) and (12) as employed in the UDM, and
may be used as a valuable performance check in other dispersion models.

The approach outlined above is simple and uses some physics-based arguments, but
is primarily given its predictive power through empirical relationships. More advanced
approaches rely on utilising the full fluid dynamics equations of the canopy flows—usually
referred to as the Navier Stokes (NS) equations—with various simplifying approximations
and empirical inputs. The entire range of techniques in computational fluid dynamics
(CFD) is very broad and beyond the scope of this report, but here we focus on one
approach that has already been demonstrated as useful for practical applications involving
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relatively stringent time and computational requirements. This more advanced approach
to surface layer flow in the canopy is to compute the mean flow by solving the time and
space averaged momentum equations. Thus influence of the canopy is taken into account
in a bulk fashion (as opposed to detailed point by point modelling) through its viscous
drag and form (pressure difference) drag on the flow, which consequently has led to the
name “distributed drag” for this class of models.

Relatively straightforward implementations of the distributed drag approach, includ-
ing a systematic description of various flow regions/features in a canopy, and physical
approximations that may be made within these regions have been given by Belcher et
al [13] and Coceal et al [14, 15]. A more complex approach is to implement a modi-
fied spatially averaged k-ε CFD model, which includes budget equations for the turbulent
kinetic energy k and turbulent dissipation ε, as demonstrated by Katul et al [16]. The
above mentioned studies have all made some implicit assumptions in the derivation of
the spatially and Reynolds averaged2 NS equations, most importantly a neglect of the
dispersive stresses3 arising from the spatial averaging operation. Lien et al [18, 19] put
the mathematical framework in dealing with time and spatial averaging of NS and k-ε
equations on a rigorous footing, and demonstrated the non-commutation of the spatial
and time averaging operators, which led to different structural equations ultimately de-
scribing the same physics, depending on whether spatial or time averaging is applied first.
By comparing results with high resolution Reynolds-averaged k-ε NS models, they also
demonstrated that the dispersive stresses were at times of great importance in canopies
with urban morphology4 [20].

For the purposes of this report, it is sufficient to take the following form for the mean
momentum equations, without elaborating on the mathematical details for the issues raised
in the previous paragraph:

∂vi

∂t
+ vj

∂vi

∂xj
= − ∂p

∂xi
− ∂Tij

∂xj
− fi, fi =

|v|vi

Lc
, (13)

where Tij is a spatially-averaged Reynolds stress, and fi is a smoothly-varying canopy
element drag (which arises from spatially averaging the localised drag due to individual
roughness elements). The parameter

Lc =
2H

CD(z)
(1− λp)

λf
(14)

does not depend on velocity and is called the canopy drag length scale; as before, H is
the average height of canopy objects, and λf and λp are morphological parameters of the
canopy. The physical meaning of Lc is a length-scale for an incident wind profile to adjust
to the canopy (for typical values of Lc, see [13]).

2Reynolds averaging is ensemble- averaging and reduces to time averaging for statistically stationary
flows.

3Specifically, the dispersive stresses arise from the spatial correlation in the time-mean velocity field as
it varies with position in an averaging volume.

4Other studies of urban canopies have asserted that dispersive stresses are negligible by quoting data
in the literature taken from plant canopies. Although this may be correct for plant canopies, it will be
demonstrated below (and similarly has been stated in the urban canopy literature) that morphological
parameters are considerably different between urban and plant canopies, so that conclusions drawn from
plant canopy data are not necessarily transferable.
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The formula (14) often permits further simplification by specifying height-averaged
CD.5 For the flow over a canopy consisting of a cubical array CD ≈ 2 [13] (CD ≈ 1.2 in
the UDM [1]6), so (14) can be reduced to

ε = H/Lc ≈ λf

(1− λp)
, (15)

where we introduced the non-dimensional “canopy density” parameter ε for convenience.
Since ε is the only parameter determined by the canopy in the “distributed drag” frame-
work, it is the parameter that should be used for any canopy parameterisation.7 In Sec-
tion 3 we will analytically derive expressions for d and z0 via ε.

It is evident that canopies with higher ε are denser (for example, the case of λp = 1
corresponds to ε = ∞ i.e. when the whole underlying surface is occupied by the canopy).
In general ε ∼ 1 for urban canopies and ε À 1 for plant canopies. In sparse canopies,
horizontal momentum flux from the ABL flow is not influenced much by the canopy,
and it directly applies to the underlying surface; otherwise in dense canopies all drag is
fully absorbed by the canopy elements. In some respects a sparse canopy case is more
challenging since it requires imposing the correct boundary condition for mean velocity
U(z) on the underlying surface. This depends of the fraction of drag propagating down to
the surface and is not known beforehand (in dense canopies we simply have dU(z)/dz = 0
at z = 0).

To illustrate the significance of the canopy parameters described in this framework
with a simple example, we consider a canopy consisting of a regular array of identical
cylinders with radius r0 and height H, separated by a distance of 2r0.8 In this example,
the expression (15) undergoes further simplification, with λf = (2H/πr0)λp, and CD ≈ 1,
so the formula can be reduced to

ε ≈ H

2πr0

λp

1− λp
. (16)

We can see how the value of parameter ε depends on the contribution of two factors:
the shape of individual elements of the canopy and their packing density. None of these
parameters separately determines the limiting value of ε in the case λp → 1 or H →
0, r0 → 0. In Sections 3.1 and Appendix A we argue that the limit should be taken in
conjunction with H → 0. Of course, this formula can be used for approximate estimation
of ε for a canopy consisting of other elements, not just cylinders.

In order to derive any analytical solution of (13), a closure assumption must be used.
The spatially-averaged Reynolds stress is usually represented with eddy viscosity models

5This is particularly important in plant canopies, where considerably different drag is experienced at
different heights (the crowns of trees versus trunks), but is less significant for the mainly uniform obstacle
arrays considered in experimental studies of urban dispersion, such as considered in this paper.

6This highlights a particular advantage of the distributed drag approach, whereby variation in canopy
density and consequently variation in canopy drag can be explicitly incorporated in the formalism, whereas
for simple empirical models such as the UDM, a particular value had to be selected a priori.

7While the equations for ε, such as (15), and that derived in section 3.1, produce broadly correct
canopy drag behaviour, they do not capture all subtleties created by non-linear effects of currents between
buildings. This is a case of a practical approximation being made in order to generate results that can be
tractably used and that are relatively universal compared to CFD calculations of the drag.

8This array is like the regular cubical obstacle array discussed in the Coanda data-set (see Section 4),
but with the cubes replaced by cylinders.
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Figure 1: Effect of a canopy on the wind profile and the resultant model of the mixing
length profile lm. The wind profile above the canopy is approximately the wind profile above
a smooth surface, lifted by d, as in (7).

Tij ∼ K(∂vi/∂xj), and variations of K-ε turbulence models can be employed for closure
(for details see [13, 14, 15, 16, 17, 18, 19, 20]). Among the variety of available closures, the
mixing length hypothesis has been widely adopted on the grounds of its simplicity even
though “the assumptions behind this hypothesis are rarely met” [17].

In the mixing length approach, the whole complexity of the turbulent flow parameter-
isation is reduced to a heuristic model for the mixing length function lm(z). The mixing
layer approach has some justification in the case of a boundary layer over a flat smooth
plane where it produces a very close match to experimental data, but it is evident that by
its definition the mixing length profile is not a generic property and it may be very canopy
specific. It is also very different for sparse and dense canopies: in a dense canopy the
turbulent flow in the ABL cannot penetrate deeply into the canopy and affect the mixing
process near the underlying surface, while in a sparse canopy mixing near the surface is
similar to that of a free surface. Below are some examples of the models for lm employed
in [13, 14, 15, 16]. The profile

1
lm

=
1

Kz
+

1
lc

, lc = const (17)

was used for an urban area where the K used in the literature is a non-dimensional
constant, and

lm = (z − (2/3)H)K, z/H > 1, (18)
lm = const, z/H < 1 (19)

for plant canopies (see Figure 1).

An interesting result was recently report by Coceal et al [14], where the function of
lm(z) was a posteriori evaluated from the canopy flow calculated by Direct Numerical
Simulation (DNS—where all scales of turbulence are explicitly resolved in the numerical

7
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solution of the NS equation). The linear sections of the function lm(z) were evident in
their results (see Figure 21 of [14]), it is claimed that in these regions the boundary layer
profile can be represented in the “displacement” form (7). Various approximations of the
lm profile presented in Figure 1 can be used for more plausible models of the mean flow
in a canopy array in the mixing length parameterisation approach. In dense canopies the
variability of the bottom part of the profile disappears since here lm is constant for ε ¿ 1
(see (19)). In Section 3, the mixing layer profile lm based on our model of the mean flow
in the canopy is calculated.

Invoking the mixing length hypothesis with lm = const allows an analytical solution
for the velocity profile near the top of the dense canopy (ε À 1) that is known as Cionco’s
canopy profile [21]: U(z) ∼ exp (cz) with c a constant. This profile is used in the UDM as a
mean flow profile in the canopy. It is worth noting that while Cionco’s profile describes well
the flow near the top of the canopy, it violates the boundary condition on the underlying
surface (U(0) 6= 0), and this can be justified only for a dense canopy.

Another approach to deriving analytical solutions of (13) is to employ various hy-
potheses of the functional relation between K and U in the canopy. Such hypotheses are
usually more generic than the simple mixing length approach since they are, by definition,
universal and non-local (contain no explicit dependencies of space coordinates or canopy
shape). For instance, the closure K ∼ U leads to Cowan’s profile: U(z) ∼ √

sinh(Az)
[38] with A a constant. The Cowan’s velocity profile meets the boundary condition at the
bottom of the canopy and we will use Cowan’s profile as an universal flow model in the
canopy. In Section 3.1 we extend Cowan’s profile for the mean velocity profile in the ABL
for a linear K–U relationship that is valid for dense and sparse canopies (i.e. for large and
small values of ε), determining the constants of the model in terms of the canopy density.

The important aspect of realistic models of turbulent diffusion in the ABL is to cater
for the ABL stability effects. These effects are usually incorporated in dispersion models
based on the Monin-Obukhov similarity theory. According to this theory, the stability
effects can be accounted for by alteration of mean velocity profiles in the following way:

u(z) = U(z)− φm

(
z − d

L

)
+ φm

(
z0 − d

L

)
, (20)

where L is the so-called Monin-Obukhov length scale (i.e. the scale of turbulent flow with
thermal fluxes), φm(z) is a known dimensionless function [4, 17], and U(z) is either of the
profiles (1) or (2). This considerably complicates the ABL flow problem, and will not be
further considered in the current report, but is a challenging extension for a more general
model than that discussed in Section 3.1, and will be developed in future work. Progress
for plant canopy models has also been recently made by Harman and Finnigan [17].

2.2 Mean Concentration Field

The equation for mean concentration C is a well-known equation of the pollutant budget
in K-theory [4, 22]:

U(z)
∂C

∂x
=

∂

∂y

(
Kyy(z)

∂C

∂y

)
+

∂

∂z

(
Kzz(z)

∂C

∂z

)
, (21)
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with the assumption that

Kyy(z) =
1
2
U(z)

dσ2
y(x)
dx

,

and σy(x) is the horizontal plume spread. It is known [4, 5, 6, 22, 23] that for power-law
profiles and a source on the ground that this equation provides the analytical solution for
the pollutant concentration in the surface layer. The solution can be written in the form

C(x, y, z) = Cy(x, y)Cz(x, z). (22)

The horizontal transverse mean concentration profile Cy has a Gaussian solution

Cy(x, y) =
1√

2πσy

exp

(
− y2

2σ2
y

)
, (23)

where σy ≡ σy(x) is the lateral dispersion parameter. The vertical mean concentration
profile Cz has a stretched exponential solution

Cz = C0(x) exp (−B(x)ζα) . (24)

Here
C0(x) =

Q

u0z0

α

Γ(β)
(B(x))β, (25)

ζ =
z

z0
, B(x) =

x0

x
, x0 =

u0z
2
0

α2K0
, β =

1 + m

α
, (26)

and α = 2 + m − n, u0 = au∗, Γ(β) is the Gamma function, and Q is the rate at which
the source releases the pollutant (rate of injection). The analytical solution (22), (23) and
(24) is a foundation for our model. In Section 4.5 we comprehensively validate it against
our experimental data.

For conjugate (5) or Monin-Obukhov (6) profiles we have simple estimates

αc = 1 + 2m, (27)
αMO = 1 + m. (28)

For small α (neutral conditions) these estimates are very close, but in general the following
inequality seems to hold: αMO < α < αc. This estimate will be validated based on our
experimental data-set (see Section 4.4).

One of the important properties of pollutant dispersion in the ABL described by solu-
tion (22) is its universal scaling, i.e. the simple functional relations between its parameters:

σz ∼ σy ∼ µ, (29)

where µ is the plume centroid position in the vertical direction (the centre of gravity of
the concentration distribution). Such scaling can be justified based on properties of flow
in the ABL [22] and can significantly simplify expressions (23) and (24), reducing them to
a self-similar universal form in dimensionless variables.

The solution (22), (23) and (24) can be generalised for an elevated source of height
z = Hs [4, 22, 23]. In such cases Cy(x, y) will not change, but Cz(x, z) can be written in
the form

Cz = C0(x, ζ) exp(−B(x)(ζα
0 + ζα))I−ν(2B(x)(ζζ0)α/2), (30)

9
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C0(x, ζ) =
Q

u0z0
(ζζ0)αν/2αB(x), (31)

where

ζ(z) =
z

z0
, ζ0 =

Hs

z0
, B(x) =

x0

x
, x0 =

u0z
2
0

α2K0
, ν = 1− (1 + m)

α
, (32)

α = 2 + m − n as above, and Iν(z) is the type I modified Bessel function. It is worth
noting that parameter ζ0 (source elevation) is responsible for the vertical concentration
profile variability close to the source, and its contribution diminishes at x > Hs. It can
be shown that at the limit Hs → 0 (i.e. ζ0 → 0) this solution tends to (24).

For the solutions given by (24) or (30), the pollutant concentration on the surface
(ζ = 0) is given by

C(ξ) =
D

ξγ
exp(−F/ξ), (33)

with ξ = x/x0 and D, F constant. We can see that function C(ξ) increases from zero,
reaches its maximum, and then decays as a power-law. The exponent γ of power law
decay is determined by the velocity profile (i.e. exponent m). For the conjugate profile
the exponent γ is given by

γ =
1 + m

1 + 2m
. (34)

It should be noted again that the value of m and hence γ is also influenced by the type of
canopy and the stability conditions.

In the UDM framework, a Gaussian form is used for the concentration profile, i.e.
simply α = 2 in (24) or (30), and the surface reflection is included for elevated sources [1].
This simply leads to γ = 2 in (33) and any dependency of γ on wind shear disappears.
This significantly deviates from the stretched exponential model (24) and (30), even in the
neutral case, since by (34) γ ≈ 1 for m ¿ 1. This may result in possible underestimation
of downstream concentration levels predicted by UDM, mostly at far distances from the
source. This deviation will only increase if we take into account stability conditions and
canopy effects, since they correspond to the higher values of m causing γ to further decrease
and to approach its limiting value γ ≈ 1/2 following from (34). Hence the effect of wind
shear may be very important for CBR concentration prediction and should be taken into
account for high fidelity dispersion modelling.9

3 Development of a New Plume Model

3.1 Flow in the Canopy

In Section 2.1 the atmospheric velocity and diffusivity profiles within the ABL were dis-
cussed for the case with very little or no canopy to impede the flow based on (1) and (2).

9This effect may not be noticeable in the urban modules of the Hazard Prediction and Assessment
Capability (HPAC) of which UDM forms a component, as when the plume reaches about 1 km or 10-12
obstacle rows downwind of the source, UDM passes puffs off to the far field dispersion model SCIPUFF.
Another complication in this comparison is that UDM is a puff model, and thus though the vertical profile
of puffs may not be optimal according to the gradient–diffusion theory described here, an aggregation of
hundreds or thousands of puffs in a computational domain may not lead to the simple ξ−2 dependency for
C(ξ) given by the plume framework of (33).

10
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The case of wind flow above a significant canopy was also discussed, viz. (7) and (8).

Here the canopy wind flow model of Cowan [38] is extended to create a self-consistent
model for the full profile, both within and above the canopy. The aim in the development
of this model is to employ as few heuristic assumptions as possible, and for the model
to be dependent on as few external parameters as is physically reasonable. Supporting
experimental evidence is given in Section 4.4.

The key to modelling average velocity flow within a canopy is to study the shear stress
within the canopy, caused by the drag the canopy exerts on the flow [38, 24, 25]. In this
way, we can derive a common framework to link equations employed in empirically based
and heuristic models such as the UDM, and more physics based distributed drag CFD
models described in Section 2.1. The shear stress is given by

τ = ρK(z)
dU(z)

dz
, (35)

where ρ is the fluid density, and K(z) = Kzz and U are the average velocity and diffu-
sivity (as in Section 2.1). It is important to note that in the K-theory of dispersion, the
assumption of equality between eddy viscosity and eddy diffusivity, namely K(z) = Kzz,
is automatically made, but this is by no means grounded in rigorous physical theory. We
will follow the same approach in this section to enable the formulation of tractable ana-
lytic models with minimal fitting parameters, however in general it may be assumed that
a constant of proportionality other than unity exists.

The rate of change of shear stress through the canopy can be related to the drag by

dτ(z)
dz

= ρC̄DAU2(z), (36)

where
A =

Af

AtH
=

λf

H
(37)

is the area density (the amount of area perpendicular to the flow per unit volume). It is
assumed that the area density is constant in z, a reasonable approximation for an urban
canopy. Assuming self-similarity between U(z) and K(z) within the canopy10 [25] gives

K(z) = σHU(z) (38)

for canopy height H, with σ a dimensionless parameter to be determined by the model
(see below). This leads to the following differential equation describing how drag affects
velocity within the canopy:

2ε

σH2
U2(z) = 2

(
dU(z)

dz

)2

+ 2U(z)
d2U(z)

dz2
. (39)

Here we see the re-emergence of the parameter ε defined in (15) in a slightly different
form, namely ε = C̄Dλf . This different form is due to the use of a bulk drag coefficient

10By self-similarity here we mean that K(z) is globally dependent on U(z), and not varying in its
dependency in different areas of the canopy. This is a strong assumption, and necessarily approximate,
but facilitates the simple but powerful analytical model developed in this section.
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C̄D, rather than a series of coefficients in horizontal slices (CD varying with z). By setting
χ = U2(z) and β = 2ε/σ, the differential equation reduces to the simple form

d2χ

dz2
− β2

H2
χ = 0. (40)

The solution of this equation is straightforward:

χ(z) = c1 sinh
(

βz

H

)
+ c2 cosh

(
βz

H

)
.

This is solved in conjunction with the no-slip condition U(0) = 0, which leads to c2 = 0.
The resulting solution for U becomes

U(z) = uH

(
sinh(βz/H)

sinh(β)

)1/2

, z < H. (41)

We now turn our attention to the flow profile above the canopy, ignoring the local
scale structural complexity of the roughness sub-layer (in the spirit of the distributed drag
approach), thereby automatically describing this layer and the constant stress layer above
in one uniform framework. Following [25], we generalise (1) for velocity above the canopy
by introducing an effective canopy displacement height d and roughness thickness z0:

U(z) =
u∗
γκ

log
(

z − d

z0

)
, z ≥ H,

K(z) = γκu∗(z − d), z ≥ H. (42)

The diffusivity profile is chosen such that the shear stress (35) above the canopy is a con-
stant. The dimensionless constant γ is a deformation parameter, capturing the departure
of the vertical profiles to that of a surface without a canopy. It is to be determined either
experimentally or on physical grounds (see [25, 26, 27]; γ ≈ 1.5 in [25]). We expect that all
our equations should be valid (at least approximately) for a value γ = 1, which is assumed
below unless otherwise specified. This is in keeping with our philosophy of not introducing
extra empirical and tunable parameters that are difficult to specify in a robust manner.
However it is clear that in reality gamma will vary with different canopies, and this will
be explored in future work.

In a similar way to [25], to determine the unknowns σ, uH , d and z0, we can introduce
four physically reasonable boundary conditions, which match the canopy and above-canopy
profiles:

U+(H) = U−(H),
dU+(z)

dz

∣∣∣∣
z=H

=
dU−(z)

dz

∣∣∣∣
z=H

,

K+(H) = K−(H),
dK+(z)

dz

∣∣∣∣
z=H

=
dK−(z)

dz

∣∣∣∣
z=H

.

(43)

Here the + and − subscripts denote the “upper” and “lower” formulae, valid above and
below z = H respectively. These conditions enforce the continuity and smoothness of
U(z) and K(z) at height H. The last condition, imposing smoothness of K(z) is new, and
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is required as the advection diffusion equation (21) used to find the plume concentration
explicitly involves the first derivative of K(z).11

Solutions (41) and (42) are matched with the boundary conditions (43) to give the
following relationships:

d

H
= 1− σ

(γκ)2
, (44)

z0

H
=

σ

(γκ)2e1
, (45)

uH

u∗
=

1
γκ

, (46)

tanh

(√
2ε

σ

)
=

1
(γκ)2

√
εσ

2
. (47)

Equations (44) and (45) lead to the useful relationship

d + z0

H
= 1− σ

(γκ)2
(1− e−1). (48)

In this analysis ε →∞ corresponds to an infinitely dense canopy and ε → 0 to an infinitely
sparse canopy.

The resulting behaviour of the velocity profile is given in Figure 2 for the cases of a
relatively sparse canopy and for a dense canopy. In the sparse canopy, the wind momentum
penetrates the canopy deeply, so the drag is applied directly to the underlying surface. In
the opposite case of a dense canopy, very little wind reaches the surface, so most of the
drag is absorbed by the canopy elements.12 In general our velocity profile is similar to the
one found by DNS in [14].

It is readily seen that as ε →∞, (47) implies

σ → 2(γκ)2

ε
,

and thus

d + z0 → H,

d → H,

z0 → 0.

It should be noted that this limit could be expected to be identical to that with no
canopy, but raised by height H. Substitution shows this is not the case, and is an artifact
of holding the velocity constant and non zero at the canopy top (height H) while matching

11It should be noted that the analysis prior to the imposing of these boundary conditions is identical to
that by Cowan in [38]. However Cowan does not impose smoothness at the boundary. It is the addition of
the expanded boundary conditions of the first derivatives used here that allows the determination of the
key flow parameters d and z0 in terms of canopy density necessary to make the model more analytic.

It was only realised after the fact that some of this model had been previously derived in [38].
12This is validated for our model by studying the shear stress at the ground as a function of parameter

ε (see Figure 3).
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Figure 2: Average horizontal velocity profile. The pink/solid line is for a sparse canopy
(ε = 0.5, typical urban) and the blue/dashed line for a dense canopy (ε = 2, forest).

parameters between the canopy wind profile and the wind profile above it. This shall be
explored and corrected in a future paper.

In the opposite limit ε → 0

σ → 2(γκ)2,
d + z0 → 2(e−1 − 1)H,

d → −H,

z0 → 2He−1.

The main feature of the limit ε → 0 is independency of the parameters d and z0 from
ε, so their behaviour is universal. Unfortunately, the skill of our model in predicting the
limits d(ε = 0) and z0(ε = 0) are not very advanced and needs further improvement in
these extremes (future work will be based around the approach of Appendix A.1). It
should be noted that the expected values for d(ε = 0) and z0(ε = 0) are 0 and the viscous
length scale13, respectively.

The plots of equations (44) and (45) showing d and z0 as functions of ε are presented
in Figure 3a. It is interesting to compare these plots with the empirical plots and formulas
used in the UDM—see (11), (12) and Figure 25 of [1]. Since ε is proportional to λf

the agreement between the results for ε > 1 (for dense canopies) is satisfactory. In the
limit of the sparse canopy ε ¿ 1, the agreement is not visually good, since this limit
involves some ambiguity (for a discussion see Appendix A.1). However away from the
sparse canopy extreme, the U(z), d and z0 profiles are quite reasonable and agree well
with experiment (see Section 4.4). The lower limit of ε for which we can use this theory
without much concern is determined by when d = 0. The corresponding threshold value
of ε is ε ≈ 0.3, which is smaller than typical values found for canopies considered in this
report (see below).

13This is a lower bound placed upon the roughness length, as viscosity creates effective roughness even
for perfectly smooth surfaces. Usually this effect is swamped by the presence of canopy objects.
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Figure 3: Left - Pink: Relative displacement height d/H as a function of canopy drag
parameter ε (solid pink line). That d < 0 for ε → 0 is an artifact of the functional form
imposing a behaviour change in flow at height H, even for an infinitely sparse canopy.
This is remedied by letting H → 0 as ε → 0. The dashed pink line is a sketch of d
corresponding to the UDM (11). Left - Blue: Relative roughness height z0 as a function
of canopy drag parameter ε. Similarly to d, the fact that z0 6= 0 for ε → 0 is an artifact of
the functional form imposing a behaviour change in flow at height H, even for an infinitely
sparse canopy. This is remedied by letting H → 0 as ε → 0. The dashed blue line is a
sketch of z0 corresponding to UDM (12). Right: Plot of wind shear stress at ground level
computed with the proposed model. We see a clear monotonic decrease of surface shear
stress with the canopy density ε, as intuitively reasoned on physical grounds.

For model consistency it is enlightening to study the shear stress at ground level, given
by (35) and plotted against canopy density ε in Figure 3b. As seen in this plot, for very
sparse canopies, the shear stress is concentrated at the ground, whereas for dense canopies,
the wind does not penetrate to the ground and there is practically no shear stress there,
as is required on physical grounds. Examining Figure 3, we can claim that for our model
all canopies with ε > 0.8 can be considered dense.

It is interesting to calculate the mixing length lm used by other models—e.g. (18) and
(19) discussed in Section 2.1—based on our framework. The formula for lm is

lm = κ
U(z)
U ′(z)

,

and lm is plotted for sparse and dense canopies in Figure 4. This can be compared to plots
for lm found in the work of Coceal et al [14] (Figure 21 of that paper). The general trend
of our profile of lm matches the results of the other models in key features, such as that
lm increases sharply for z > H, and is non-zero within the canopy.

3.2 A New Model for the Mean Concentration Profile

The new model presented in the previous section for flow in and above a canopy, combined
with the universal solutions for the mean concentration profile in a shear flow (24) and (30)
lay the ground-work for a new model of concentration profile in the ABL with a canopy.
The key points to this model are:
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Figure 4: Plot of mixing length lm for our flow model. The pink (long dashed) and blue
lines are for ε = 1 and 4 respectively. The red (short dashed) line is to give a comparison
of the gradient of Figure 21 in [14] for z > H.

1. Since the mean flow above the canopy (42) can be modelled with the two parameters
d and z0, expressed in Section 3.1 in terms of canopy density ε and height H through (44),
(45) and (47), the power-law velocity profile (8) with the same value of these parameters
is also a realistic model of the mean flow in the canopy14. For this power law profile,
the stretched exponential solutions for concentration (24) and (30) are exact solutions
of the turbulent diffusion equation (21), so we come to the conclusion that the formula
(30) should be a realistic model of concentration distribution for z ≥ d, if ζ is replaced
by ζ = (z − d)/z0, where d is the height that the canopy has displaced the plume by,
and is defined by our flow model (see Figure 1). We acknowledge that the new model for
canopy flow derived in the previous section, which uses a log law profile, is mathematically
inequivalent to the power law profile employed to derive the vertical mean concentration
distribution, and thus the models are in some sense incompatible. However as shown in
Section 2.1, within the ABL the two models are similar enough to be interchangeable.
Thus we take a practical approach here that employing these different velocity functions
for different purposes is the only way to make progress in deriving simple analytical models
in the first instance.

What is the concentration distribution for z < d? The simplest assumption is to
assume that far from the source the flow in the canopy is well-mixed and is in dynamical
equilibrium (all concentration gradients have been smoothed out by turbulent diffusion).
This leads to the conclusion that

Cz(x, z) ≈ C(x, d), z < d. (49)

This “clipped stretched exponential” profile is a good approximation everywhere outside
14There is a cost to taking this equivalence, in that the power law profile is not universal, and introduces

constants which will need to be fitted by comparison to experiment, however this a traded off against a
functional form of the velocity profile for which analytic plume concentration calculations are possible.
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the the so-called source region, which is typically one to two obstacle rows downstream
in the obstacle arrays considered in this report and other similar studies. A supporting
analytical argument can be found in Appendix A.2.

2. An alternative model to the “clipped stretch exponential” model (49) can be for-
mulated in terms of the power-law exponent α in (24).

In Appendix A.2 it is shown that near the bottom of the canopy the advection-diffusion
equation can be solved to give a mean concentration profile with α = 2. Thus a smooth,
continuous function for the concentration profile can be arrived at by assuming:

α = α0(1− λ exp(−z/d)), (50)
λ = 1− 2/α0

and inserting this into mean concentration profile (24). The ansatz for α has been designed
to change behaviour at the effective canopy height d.

Conceptually, close to the ground this model predicts that the effect of the canopy is
to restrict the wind and to cause the tracer to disperse in a Gaussian manner. Then above
the canopy, the dispersal is dictated by the power law behaviour of the wind and diffusivity
functions. In Section 4.5 this model is validated against our experimental data-set and
provides a close match.

It should be emphasised that the vertical dependency of α introduced in (50) will
modify not only the power-law exponent in concentration formulae (24) and (30), but also
the pre-exponential term C0, which contains α within x0. From physical grounds, such
complex modification of the concentration profile is imposed by the self-similarity property
of the solutions (24) and (30).

3. The next new feature of our model is an “effective elevation” of the tracer source,
i.e. non-zero value of the parameter ζ0 in (30), even for ground-level sources. The physical
reasoning behind this is an observed effect of the mean flow being pushed up by the
canopy. This is coupled with the effect of the highly turbulent recirculation region behind
the obstacle where the source is placed, rapidly mixing the tracer to fill the entire wake up
to the canopy height with contaminant. This effect is most pronounced when the source is
placed just in front of a canopy object. Such effects have been observed in many previous
obstacle dispersion experiments [7, 12, 28, 34, 36]. The experimental evidence for this
with the currently considered data-set is covered in Section 4.5.

The resulting pattern of the pollutant is as if it were released from an elevated source
(Figure 13 below gives an example of this effect from our data). Including a non-zero
parameter ζ0 in our model for ground-level sources permits a realistic description of the
vertical variability of the concentration profile in the “near source” field before the con-
centration distribution approaches the “clipped stretched exponential” regime described
above.

It is possible to provide a simple estimate of the value of ζ0 in terms of the relative
source position and the averaged canopy height H for ground level sources within the
canopy. It is evident that 0 ≤ ζ0 ≤ 1, so as the first approximation we can take

ζ0 = (H − σz0)/H, (51)
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Figure 5: Illustration of the concept of a virtual source induced by the wake regions of
the obstacle array. The virtual source is lifted to height ζ0H (52).

for ζ0 ≤ 1 and ζ0 = 0 otherwise (see Figure 5). The plume spread σz0 is the corresponding
vertical dispersion parameter taken if no canopy were present,15 and can be estimated
from the well-known kinematic condition [4] σz0 ≈ V⊥x/V‖ ≈ u∗x/U0 ≈ Cfx, where u∗ is
the friction velocity, U0 is the undisturbed velocity far from the surface (at the top of the
boundary layer) and Cf is the drag coefficient for the flow over a flat smooth surface [4].
Thus we obtain

ζ0 = (H − ψCfXH)/H, (52)

where XH is a distance from the source to the first canopy element downstream and ψ is
a numerical factor to be determined.

To summarise the urban plume model discussed above, we have Cy(x, y) unchanged
from (23), and combining the elements above, we obtain the following model for Cz(x, z):

Cz =

{
C0(x, z) exp(−B(x)(ζα

0 + ζα))I−ν(2B(x)(ζζ0)α/2), if z ≥ d
Cz(d), if 0 < z < d,

(53)

C0(x, ζ) =
Q

u0z0
(ζζ0)αν/2αB(x), (54)

ζ(z) =
z − d

z0
, B(x) =

x0

x
, (55)

ζ0 =
H − ψCfXH

H
, x0 =

u0z
2
0

α2K0
, ν = 1− (1 + m)

α
. (56)

Including the varying α hypothesis instead of a having constant behaviour below d is also
possible, but leads to complications that will be resolved in future. Instead, in the next
section, varying α is studied without an effective source rise.

The verification of the components of this model is discussed in the following section.

15Thus not to be confused with the actual plume spread derivable from the canopy model being discussed.
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4 Data Analysis

4.1 Introduction

The plume dispersion models described in this report do not give self-contained predictions
of the contaminant concentration fields. Instead they predict the functional form of the
concentration distributions based on assumptions about the nature of the underlying flow.
Analysis of experimental data can validate the assumptions about the flow used to derive
the dispersion models. The data can also fix the free parameters of the dispersion models
to give predictive power to the models.

The data presented here were collected in water channel simulations carried out in the
Coanda Research & Development Corporation’s (Burnaby, British Columbia, Canada)
environmental water channel. The simulations were conducted in collaboration with De-
fence Research and Development Canada (DRDC), which had a multi-year program in
the development of the channel and collection of extensive velocity and 1-dimensional
(1D) tracer dispersion data-sets. DSTO extended the experimental program to investi-
gate 2-dimensional (2D) sampling of the tracer concentration, as well as in-canopy velocity
measurements, as described below. The water channel is specially designed for dispersion
modelling, and has a working section of 10 m length with a cross section of 1.5 m width
and 0.9 m height. We will give a brief description of the water channel experiment here,
to establish the context behind the data. Considerably greater details of the water chan-
nel experiments and the instrumentation deployed are available in a report provided by
Coanda [29], and previously published work using this data [28, 30].

4.2 Brief Experimental Description

The upwind part of the working section of the water channel was used to generate an
appropriately scaled model of the neutrally-stratified ABL. A thick rough-wall boundary
layer in the water channel of about 0.3 m thickness was generated. The combination of saw-
tooth fence and turbulence grid made of square bars 19x19 mm was used to immediately
produce some of the larger-scale turbulent eddies in the boundary layer. Downstream of
the saw-tooth fence, the floor of the water channel was covered with a black anodised
expanded metal mesh of height 4 mm with a total length of 6 m to give a long fetch of
surface roughness for the upstream flow development. The flow then encountered either
further mesh for the case of open terrain with no obstacles, or the model obstacle array,
which was mounted on a turntable that extended 1.25 m in the stream-wise direction.
Downstream of the obstacle array, the flow encountered a section covered with the same
black anodised expanded metal mesh that was used for the initial upstream approach flow
development.

Two approaches were used to measure velocity statistics within the boundary layer
of the water channel. A dual-beam laser doppler velocimeter (LDV) fibre-optic probe
was used in the original experiments commissioned by DRDC. To complement this data
set, DSTO commissioned some acoustic doppler velocimetry (ADV) measurements using
a Sontek MicroADV instrument. Both these instruments have their strengths and weak-
nesses [31], and a combination of the two data sets provides a complete and complementary

19



DSTO–TR–2366

set of velocity measurements. Vertical profiles of mean wind and other turbulence param-
eters were measured in the equilibrium (fully-developed) boundary layer upstream of the
obstacle arrays. The height of the boundary layer, taken to be the height where the mean
wind was 99% of the free-stream value, was found to be 275 mm. At this point, the mean
wind speed was 0.375 m s−1.

For the water channel simulations, a ground-level point source was used, emitting
sodium fluorescein dye tracer at a constant flow rate. An example of one particular obstacle
array is presented in Figure 6 (left panel). The source was located at the first street canyon,
and the measurements were conducted for the various models of urban terrain (obstacle
array configurations). The size of the “atomic” cubic element of the various obstacle arrays
was H = 31.75 mm. A number of Urban Arrays of different heights (1H, 2H, 3H and
their random combination) and different space patterns (regular and random) were used in
the simulations. Measurements in the so-called “Tombstone Array” were also conducted
to enable comparison to a similar experiment conducted using 1D line-scans by DRDC.
The Tombstone Array was constructed from vertical stainless steel tabs (60x10x1 mm)
installed vertically into laser cut slots and arranged in staggered formation. For Urban
Arrays, measurements were conducted at six downstream locations (2.0H, 4.0H, 10H,
16H, 26H), and for the Tombstone Array at five downstream locations (1s, 2s, 4s, 7s,
12s, where s = 44 mm).

Figure 6: Left: Coanda Urban Array 001 consisting of regularly spaced cubic objects
with packing density 0.25. Right: Location of positions within a cell unit where velocity
measurements were taken. The dark shaded area indicates the position of the object within
the unit cell.

The instantaneous concentration field in the dispersing dye plume was measured using
the 2D laser-induced fluorescence (LIF) technique, which permitted simultaneous multi-
point concentration measurements to be acquired with high spatial and temporal reso-
lution. A fluorescent dye is emitted from a source, and then disperses in the turbulent
boundary layer. The dye encounters a laser sheet that causes the dye to fluoresce. Each
pixel of the real time fluorescing image can be accurately calibrated to a concentration
field and captured in a CCD camera. Each 2D scan consisted of 696x260 pixels, giving a
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spatial resolution of about 1.4 mm. The 2D scans were sampled for 1000 s at 23 frames
per second, giving data sets of about 23,000 images per experiment.

In addition to low level data, Coanda has also supplied analysis programs and anal-
ysed data. A software framework has been developed here at the DSTO to allow the
comparison of plume dispersion models and the Coanda data. This software framework
utilises the lower-level Coanda software and processed data, and applies higher-level anal-
ysis. For preliminary data analysis the software was developed in MATLAB. A more
advanced framework is written in the C++ programming language. It provides a conve-
nient environment where large amounts of processed data can be collected and analysed.
Software to read and analyse low level Coanda data has also been developed. Fitting and
other analyses are performed using the ROOT analysis package [32] developed by the high
energy physics community.

4.3 Coanda Dataset—Preliminary Analysis

The Coanda data-set has been used in several studies of plume dispersion [28, 30, 33].
In this report the 2D Coanda data-set is used to validate analytical predictions of the
models developed in the previous section. As a first step for such validation, we verify the
existence of universal scaling (29) and existence of stretched exponential profiles (24) and
(30) in a complex canopy.

According to (29), the ratios σy/µ and σz/µ should not depend on the downstream
position. This fact was demonstrated in a previous paper [30].

Also, that the cross-stream mean concentration is given by Gaussian distribution (23)
has been observed in many previous studies [12, 28, 33, 34, 36]. This Gaussian behaviour
can be seen in figures 11 and 13.

The stretched exponential solution (24) was used to match the mean concentration
profile in the vertical direction for the turbulent surface layer above both smooth and
rough surfaces. The results are presented in Figure 7. As can be seen the stretched
exponential model is consistent with the measured concentration data.

In Figure 8 the plot of y = log(log(Cmax/C)) against x = log z is presented (smooth
surface case), so each stretched exponential profile corresponds to a straight line (with the
slope of such a line determined by the power exponent α in (24)). From the left-hand
plot, we observe that the stretched exponential function is a plausible model for the mean
concentration profile in the vertical direction for the case of a simple sheared boundary
layer (all plots collapse under normalised coordinates).

The righthand plot in Figure 8 shows the effect of the regular cubical obstacle array
on the standard vertical profile form. We can see that the canopy causes a deformation of
the slope around height H, i.e. plot of log(log(C) becomes horizontal within the canopy.
Because of mixing and flow homogenisation, the value of α tends to 0 in this region. This
is consistent with the “clipped stretched exponential solutions” (49) and (53). However
we do not use α → 0 to model the concentration profile using a varying α formalism (as
in (50)) as this contradicts the result of Appendix (A.2).

From these plots we estimate a value of the α exponent of the stretched exponential
distribution for various downstream positions. We find a good agreement between values
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Figure 7: Vertical cross-sections of the normalised mean concentration as a function of
downwind position. Solid line is the stretched exponential fit (24). Ca depicts the time
averaged concentration at that height and downstream position, Ca,max is the maximum
concentration along this vertical axis. σaz is the standard deviation in the vertical position.
Description of the obstacle arrays can be found in [29].
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Figure 8: Plot of log(log(Cmax/Ca)) against normalised vertical coordinate log z/σaz.
The slopes of curves are determined by the power exponent α in (24).

of α found from data presented in Figure 8. (and plotted in Figure 9) with our theoretical
estimates (αc = 1 + 2m = 1.54, αMO = 1 + m = 1.27) for a measured value of m = 0.27
(obtained from fitting to data in Figure 11).

4.4 Coanda Flow Velocity Measurements

The velocity of the atmospheric flow within and above an urban canopy is the key driver of
plume dispersion. For the models described in this report the mean stream-wise velocity
and its height dependence are important parameters.

The Coanda data-set includes measurements of the velocity fields over a range of
mock urban canopies. Individual data points give a measurement of two of the velocity
components at a single point in the flow. With repeated measurements, the full 3-D flow
structure can be characterised at a range of heights and positions within and above the
canopy.

Figure 10 shows an example of the velocity information that can be extracted from
the Coanda data-set. The configuration of the obstacle array for this measurement is
designated Urban Array 001. This array consists of a regular pattern of cubic objects as
shown in Figure 6. Also shown in Figure 6 (right panel) are the positions within one of the
array sub-units where the velocity measurements of Figure 10 were taken. The velocity
measurements in Figure 10 show that the flow velocity above the canopy is uniform over
the array (ie the data points all follow a common line). That the data points within the
canopy have a significant spread in velocities indicates that there are complex flow patterns
depending on the location of the measurement with respect to the objects of the array.16

16It should be noted that the measurement points are not ideally placed for this fit to give a true average
of the velocity profile of the system. Rather this plot gives a representative idea of the behaviour of the
velocity profile. Negative velocities correspond to eddies directly behind the array objects.
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Figure 9: Variation in the parameter α of (24) as a function of downstream distance
from the source for the Coanda data with no obstacles.
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Figure 10: Measurements of height z vs. mean stream-wise velocity U for the Coanda
Urban Array 001. The data points come from measurements at different representative
points around a single array object. The configuration of the array and the location of
measurement points can be seen in Figure 6 (right panel). The dashed blue line indicates
the height of the objects in the array. The solid line is a fit of all of the data to the
functional form given in (41) and (42).
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4.5 Coanda Mean Concentration Measurements

As mentioned in the Introduction, the long term goal of the work presented in this report is
to find models that can describe the concentration fluctuations in a plume. An important
first step in developing these models is to describe the time averaged behaviour of the
plume. The basic form of the stretched exponential solution for mean concentration in a
plume is shown in (24).

Underlying this solution is the description of the flow, namely that the mean down-
stream velocity, U , and diffusivity, K vary with with height as a power law. Equation (24)
has four free parameters associated with the flow: U and K at a reference height and
their respective power law height indexes m and n. If the absolute concentration is not
normalised this gives a total of five free parameters. Clearly the number of free parameters
is a major difficulty in validating (24). Part of the data analysis work described here has
been to maximise the use of available data to constrain the fit parameters.

For the Coanda data-set, the measured concentrations are normalised to a known
source strength. Using this information it is possible to fix the absolute concentration
normalisation of (24) rather than have it as a fitted parameter. Further constraints can
be put on fitted parameters by demanding consistency in the parameters of the flow at
different locations. This has been achieved by performing a global fit for flow parameters
over plume concentration profiles at different downstream distances from the source.

Figure 11 shows an example of fitting (24) to Coanda data for the case where there
is no urban canopy. The figure shows that if the fit parameters are allowed to vary for
each profile, the functional form of (24) can provide an excellent match to the data. If a
global fit is done, demanding the same flow parameters in all parts of the flow, then the
fit, although not perfect, is still a very good description of the data.

Figure 12 shows fits of a stretched exponential form to Coanda data where an urban
array is present (Urban Array 001). The presence of the canopy causes a vertical dis-
placement in the flow as discussed in Section 3.2. In Figure 12 the vertical concentration
profiles have been fit to the form given in (53), with displacement height d calculated from
(44) to be 11 mm. Within the canopy the concentration is assumed to be constant. If the
flow parameters are allowed to vary at different locations in the array then the functional
form of (53) describes that data well.

If a global fit is done, with consistent flow parameters throughout the array, then
the fit works poorly. The reason for this is probably that while the functional form (53)
does predict that the amount of material in a plane perpendicular to the direction of flow
attenuates with distance from the source17, the concentration attenuation in the Coanda
experiment is much too high to be explained by this effect (the functional form predicts an
8-10% loss between the 508 mm and the 825 mm points, whereas what is lost is closer to
50%). Rather material is apparently being lost because the sensors cannot detect a local
concentration below a specific threshold, and thus when a plume fluctuation drives the
concentration too low, especially when the average concentration in the region is already
low, then the sensor records that no tracer is present. Alternative explanations are that
the flow is non homogeneous over the array (quite possible as the array designers put

17This is because conservation of concentration flux at the higher wind speeds of greater altitudes
corresponds to lower concentrations.
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Figure 11: Plume concentration profiles from Coanda data: a ground level release over
flat terrain (no canopy). The plots on the left show the vertical concentration profile at
different downstream distances (black and blue points). Concentration has been normalised
by concentration of dye in the source pipe fluid and is dimensionless. The plots on the
right show the horizontal plume profile. In each plot the magenta line shows the results of
fitting (24) (vertical profiles) and a Gaussian function (horizontal profiles) while allowing
the flow parameters to vary at each downstream position. The red and green lines in the
vertical profile plots show the form of (24) if the fit parameters are derived from a global
fit to all vertical concentration profiles.
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Figure 12: Same plots as shown in Figure 11, but for plume dispersion over Coanda
Urban Array 001. Vertical axis is concentration and has been normalised by concentration
of dye in the source pipe fluid and is dimensionless. See Figure 6 for details of this array
configuration. The source has been located at ground level in a canyon between rows of
objects. The functional form used in the fits is given by (24). The dashed lines in the left
hand plots refer to a global fit over all the data.
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the plume sources near the beginnings of the arrays, so turbulent conditions are likely to
be different at the source than near the middle) or that the model is missing some key
behaviour. Further investigation is required to resolve this.

The vertical displacement of the flow caused by a canopy is an example of a global effect
of a canopy on the flow. In the Coanda data we can also see local effects on the plume
due to structures in the canopy. Figures 12 and 13 show concentration profiles taken
under identical flow and array configurations. The only difference is that in Figure 12
the source was placed in a “canyon” between rows of objects in the canopy, while in
Figure 13 the source was placed directly upstream of an object. The vertical concentration
profile in Figure 13 shows a pronounced peak that is higher than that seen in Figure 12.
We hypothesise that the local structure in front of the source is pushing part of the
plume upward simulating a non ground-level source. This type of effect has been observed
consistently in previous obstacle array experiments [12, 28, 34, 36]. To fit the data we have
used the form of the raised clipped stretched exponential (53) and we have used (44) to
calculate the effective canopy height d = 11 mm and made an ad-hoc assignment of source
height of 10 mm18. As can be seen, the fit of the functional form to the experimental data
is currently faulty. While the functional form can indeed produce the same flat region
within the canopy followed by a rise in concentration above the canopy, which fades with
distance, the algorithm used in obtaining this plot has not yet been adjusted to account for
the effective loss of tracer as discussed for Figure 12. Initial calculations suggest that once
this weakness in the experimental data is accounted for, (53) should fit the experimental
data well.

The plot in Figure 14 represents a fit with the varying α of equation (50). We observe
that this model provides a satisfactory fit in the region close to the source, although slightly
worse than for the “clipped stretched exponential” in Figure 12. As expected, the two
different functional forms and make mostly no difference above the canopy.

5 Conclusions and Future Work

The high fidelity modelling of tracer dispersion in heterogeneous canopies is a compu-
tationally intensive task that still requires long execution time and significant computer
resources. In the current report we have shown a new approach for development of simpli-
fied flow and dispersion models for urban environments that are easily treated numerically
in an operational environment with minimal computer resources. The framework estab-
lished does not intend to offer a new generation of dispersion models to replace existing
operational models, but rather provides a link between empirical, fast models such as the
UDM, and computationally intensive CFD models. The models can thus justify some
heuristic approximations of the UDM, and provide an important performance check for
CFD models. This enables a more comprehensive understanding of the problem, with
greater clarity in the approximations and assumptions made for various dispersion mod-
els. We have presented experimental results from water channel experiments to support
the theoretical findings.

18A best guess assignment is used at this stage as the problems with the current global fit algorithm
means ψ in (52) is yet to be determined.
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Figure 13: Identical plots and array configuration as for Figure 12 except the source has
been placed directly behind an object in the array. The functional form used in the fit is
given by (53). Vertical axis is concentration and has been normalised by concentration of
dye in the source pipe fluid and is dimensionless.
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Figure 14: Example of model fit for ground source in a canopy array. Vertical axis is
concentration and has been normalised by concentration of dye in the source pipe fluid and
is dimensionless. In each plot the magenta line shows the results of fitting (24) (vertical
profiles) and a Gaussian function (horizontal profiles), but with α from (50). Better fit in
the source region (top plot).
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The framework is also important as a first step in the development of models of con-
centration fluctuations in urban environments. Such models facilitate the generation of
realistic plumes for synthetic environments used in operational analysis studies. Thus the
strong internal variability and intermittency of the concentration field within a dispersing
plume will be able to be captured. This will enable the calculation of realistic fluctuat-
ing CBR challenge levels, which will facilitate studies on optimal detection systems for
CBR threats, provide the necessary input for models of toxicity response and data fu-
sion algorithms for enhanced situational awareness, and is a cornerstone for the rigorous
quantification of uncertainty in dispersion predictions.

Scope exists to refine the proposed modelling framework. This includes resolution of
the un-physical behaviour of the displacement height d as the canopy drag parameter
ε becomes very small. To provide a truly unified framework, a single functional form
for the velocity framework would also be preferable. The problem here is that there is
no analytical solution for the advection diffusion equation in a log-law boundary layer—
the traditionally preferred description of a sheared flow boundary. With the stronger
theoretical underpinning of the power law velocity profiles due to Barenblatt [5, 6], this
could be a preferred option, however the flow model described in Section 3.1 would be
ill-determined with the use of this functional form. There are options for a more complex
specification of the profile with a variable power law exponent α that would enable a
solution here, but this added complexity and extra parameterisation was not pursued in
the first instance as reported here.

The equation (53) currently models what should happen to the tracer in the plume
spreading over an urban canopy. However when comparing this model to experimental
data, a model of how the equipment ‘sees’ a particular turbulent plume concentration
is also needed, in order to accurately compare experiment and theory. This is because
any experimental setup is not perfect. In the case of the Coanda experiment, a weakness
lies in the equipment not being able to sense a concentration below a critical threshold,
and as such part of the plume is not captured by the experiment,19 resulting in apparent
non-conservation of the plume in the data and deformation of the plume shape. Such a
step is essential for the model to be able to predict not only what a plume would do, but
how sensors and experiment would see the plume. It would also allow completion of the
validation of the model with the Coanda data-set, such as in Figures 12 and 13.

This is suspected to be a key reason why a global fit of parameters for the model over
the whole scope of a plume affected by an underlying canopy is poor. Other possible
reasons are that the COANDA experiment’s flow may be non homogeneous over the array
(due to the array designers placing the plume sources near the beginnings of the arrays,
instead of the middle) or that the model is missing some key behaviour. A combination
of these causes is possible.

However, that the model can describe the plume well without an array, or with an
array with individual fits for different downstream distances shows it captures much of the
key physics.

The framework developed allows a link between previously published DSTO work on
19This problem is compounded by the rescaling of source concentrations and output data done for

long upstream distance releases (done to improve detectability) combined with an unknown algorithm for
cutting off noise which appears only partly dependent on the local average concentration.
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fluctuating plume models in urban settings [30, 33], current DSTO–CSIRO collaborative
work on internal concentration fluctuations [37], and more complex distributed drag CFD
models in urban areas [18, 19, 20]. This will enable a high fidelity model of urban dispersion
to be implemented for emergency response applications, with the extra capability for
concentration fluctuation prediction and characterisation of the uncertainty in modelling
predictions. Components of this technology may ultimately be transferred and integrated
into a national Australian hazard prediction modelling system, should support be provided
by civilian Government agencies.20

The framework developed has also provided a link through the UDM to another impor-
tant operations analysis capability that DSTO now possesses—the CBR Virtual Battle-
space developed by Dstl. There is further scope for development of concentration reali-
sation models within this capability framework. Such models will rely more on simpler,
faster approaches to dispersion modelling than CFD to enable rapid calculations for oper-
ational analysis tasks relying on exploration of high dimensional variable spaces, thus the
framework developed here is ideal for these purposes.

Finally, the generation of prototype simple synthetic environments for plume realisa-
tions is also required to further develop data fusion algorithms for CBR source charac-
terisation and network detection. The framework developed here is the first step in the
development of such a synthetic environment at DSTO for these purposes, and can ulti-
mately be used to compare the approaches studied at DSTO with those of our international
collaborators.

20A project, funded by Emergency Management Australia, to undertake a scoping study for such a
capability is currently underway .
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Appendix A New Plume Dispersion Model

A.1 Velocity Profile

The parameter σ, while not fundamental (it is totally determined by ε and γ) is important,
because the formulae for U , K, d and z0 cannot be written in terms of ε. Thus we have
included a plot of its behaviour here (see Figure A1). The key features it has are that it
decreases from a maximum in the sparse limit and approaches 0 at infinity. It is also very
sensitive to γ, increasing sharply as γ increases.

Following on from this, it is worthwhile looking in more detail at what happens to the
wind profile model in the extremes of very dense and very sparse canopies. For very dense
canopies we get for ε →∞

d + z0 → H,

d → H

(
1− 2(γκ)2

ε

)
→ H,

z0 → 2H(γκ)2

εe1
→ 0,

σ → 2(γκ)2

ε
,

U− → u∗
γκ

exp
[

ε

(γκ)2

(
z

2H
− 1

2

)]
→

{
0 if z < H
u∗/κ if z = H

,

K− → σHu∗
γκ

exp
[

ε

2(γκ)2

(
z

H
− 1

)]
→ 0 for z < H,

U+ → u∗
γκ

[
1 + log

(
1 +

(z −H)ε
2H(γκ)2

)]
→

{
∞ if z < H
u∗/κ if z = H

,

K+ → γκu∗(z −H). (A1)

That U+(z) → ∞ in this limit shows that this theory does not well cover the case of an
infinitely dense canopy. This is an artifact of the functional forms forcing the velocity
to remain constant and non-zero at H, even as the effective ground height d rises to H.
To negate this, it is necessary to let the velocity at the canopy top decrease to zero as ε
increases to infinity, such that the velocity at the top of the ABL remains constant.

In the limit ε → 0 a different problem arises

σ → 2(γκ)2,
d → −H,

z0 → 2He−1,

d + z0 → 2(e−1 − 1)H,

V− → u∗
γκ

√
z

H
,

K− → 2γκu∗
√

zH,

V+ → u∗
γκ

[
1 + log

(
z + H

2H

)]
,

K+ → γκu∗(z + H). (A2)
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The problem is that if ε = 0 there should be no canopy, thus no behaviour change in
U(z) at z = H. For example this theory predicts a significant difference between wind
passing over a perfectly flat field and a perfectly flat field with a few infinitesimally thin
sticks standing upon it. The theory behaves sensibly in the ε → 0 limit only if the canopy
height H → 0 at the same time. However away from these extremes, the U(z) and K(z)
profiles are very sensible and agree well with experiment (see Section 4.4). The lower limit
of ε for which we can use this theory without concern is determined by when d = 0. The
corresponding ε value is

ε = 1.8336(γκ)2. (A3)

A.2 Vertical concentration gradient within the canopy

This section provides a closer look at the predicted concentration within the canopy.
Inserting the modelled formulae for U(z) (41) and Kzz(z) (38) into the advection-diffusion
equation (21) yields

∂C

∂x
=

σβ

2 tanh(βz/H)
∂C

∂z
+ Hσ

∂2C

∂z2
, 0 < z < H. (A4)

This is subject to the boundary condition that tracer material should not move below the
ground:

∂C

∂z

∣∣∣∣
z=0

.

For typical values of the canopy parameter ε used in the Coanda experiment (designed
to model an urban environment), tanh(βz/H) can be approximated by βz/H. This is
especially true near the ground. The solution for (A4) can thus be approximated by

C−(x, z) ∝ x−3/4 exp

(
− z2

4σHx

)
, 0 < z < H. (A5)

The important observations to make here are that:
A) For x > H/σ the exponent of e above would be small and thus C within the canopy
would be close to constant a short distance downstream of the source,
B) The exponent α (50) should indeed be 2 at the ground.
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Figure A1: The parameter σ against ε for various γ
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